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@ Ccnes

Topics

= |) Multi-scale, multi-order statistical evaluation of NEMO OGCM
= |dealized configurations

= |I) From multi-order statistics to multifractal downscaling
= Method based on properties identified in |)
= Applicability : more general than OGCMs

= |[I) Controlling unknown diffusion parameters in NEMO
= A variational approach
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1) Statistical evaluation

=  Geophysical flows are turbulent

2
= Scales related by remarkable i
symmetries
= Energy/power spectra are scaling o ¥
s
= OGCM outputs should follow ; () SST
scaling statistics i ¢ wssmmm s oo v e
10 100 1000
= Multi-scale evaluation tool Wave number
= Spectral tools are restrictive Example: NEMO-GYRE 1/54°

i Lé l., 2012
= Mono-order (quadratic) spectrum (Lévy et al., 2012)

= Not the whole cdf

Suggestion: use multi-order statistics across idiffescales
to generalize spectral analysis



Spectral Density (m? s2)

: *Ccnes
@ From mono- to multi-order ¢

scaling : atmospheric data

Spectra « Multifractals » (Schertzer & Lovejoy, 1987)
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Multiplicative cascades

= Multifractal fields are built
by a stochastic iterative
apparoach

--> cascade ¢

= Possibly add a (scaling)
low-pass filter

= State variable is related to the
positive quantity @ but is not @

I

Multiplicative cascade ®: i.i.d. multiplicative
increments



@ Statistical properties of multifractal Ccnes

flelds

" Power-law energy spectrum
E(k)= k* B= 1K@ (<1)

= Statistical moments of order g vary as a power-law of
resolution A:

g = statistics order (> O, not necessarily integer)

<d5q> ~ JK(@)
A K(g) = moment scaling function

® Filtered version : Additional fractional integration
(multiply by k -H in Fourier space)
= Pente spectrale B = 1-K(2)+2H 6
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MU/FIF parameterization

® Universal multifractals (Schertzer & Lovejoy, 1987)
" Moment scaling function described by two parameters:

Cl ( a_ ) a = multifractality parameter 0 < a <2
qa-9

K(q)=

a—1 C, = inhomogeneity parameter (for « mean » intensities) 0 < C, <D

" FIF (Fractionnally Integrated Flux)
@ is fractionnally integrated (at order H), providing the FIF field X:

" Increments follow a scaling law:
AX =D, A H (in distribution)

= Analogous to Kolmogorov scaling law:

_ 13 , -1/3
AV/I— €y AX ® analoguous to energy/variance
dissipation



@

= Stolle et al. (2009) and
Lovejoy et al. (2011):
= ERA-40 and forecast AGCM

=  Multifractal laws were
found from planetary
scalesto ~ 1°

" Needs to be done for
OGCM outputs ...

Ccnes

Multifractals and AGCM?

température
ERALD GFS

Logioht Log;oM




Multifractals and ocean?

What appears from satellite data (de Montera, Verrier, et al., 2011)
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Fig. 2. Example of a 128 km? horizontal chlorophyll map (resolution 1 kmz) extracted from the

SeaWiFS local L2 product.

4 mg.m”

Ccnes



Ccnes
Multifractals and ocean?

What appears from satellite data (de Montera, Verrier, et al., 2011)
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Fig. 5. Scaling of the statistical moments of the flux ¢ for the orders ¢=0, 0.1, 0.2, ..., 2,
with corresponding theoretical fits. Here, L corresponds to the largest scale of the SeaWiFS
chlorophyll maps, i.e. 128km. For each map, the flux was normalized to a mean value of 1.
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1) NEMO multi-order evaluation

= 1) Idealized simulations of NEMO

= 2) Determination of filtering exponent H ,
deconvolution provides @

= 3) Study of ® moments for several positive orders,
providing an estimate of a et C1

11
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NEMO simulation

GYRE 1/8:: 55T at time step 1757040 { Selected area)

120
100

a0

" GYRE 1/9°

= Spinup 50Y + study window 1Y
® Surface data are considered

B0

40

20

= BJET 5km

= Zonal jet + baroclinic perturbation
= Zonally periodic domain (~EEL)
" Spinup 1Y + study 1Y

BJET Surface Fotential Density at time step 128160 { Selected area)
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<| SST(¥ 6xX)— SST(Xp=< D > 5x"

Ccnes

Estimation of filtering parameter H

Scaling of 1st order Kolmogorov
structure functions :

B~1+H

Piecewise scaling :
= H~0.4fordx > 10 x gridstep
= H~0.75 for dx < 10 x gridstep

Smoother variability at small
scales, confirmed for other fields

Physical regime ? Effective
resolution problem ?
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Absolute SST increments for the GYRE simulation, as a
function of lag
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log2(g-th moment)

Moments of ® (log-log)
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Scaling exponents K(q)

Better scaling of @ statistics, down
to O(2) x the gridstep

Scaling is better for GYRE than for
BJET

Scaling exponents K(q) such that :
<¢zq> ~ 7K@

K(q) accurately described by
Schertzer-Lovejoy (universal)
parameterization :

K(q) ~ C,/(a-1) (q°-q)

Parameter values are coherent with
oceanic empirical values

Ko}

G%RE 1/ 55T 25 maps Moment scaling function

1 1 1 I 1 I
I 0.5 1 1.5 2 2.5 3

Values ofK(q) for NEMO simulation and best-fit
universal parameterization in the rangaj€2
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II) Downscaling

= Purpose : determining a description of unresolved variability
that can convert low-resolution GCM outputs into higher-
resolutions variables

= Needed for important applications:

Impacts of climate change (e.g., impact models need high-resolution
precipitation inputs)

Downscaling atmospheric forcings used in high-resolution oceanic
models

Helps to improve comparison between model outputs and data (satellite,
in-situ/pointwise...) with different resolution

16



@ Ccnes

Downscaling strategy

= Dynamical (regional GCM) vs statistical approaches

u Dyn : correct location of extrema is expected, but computationnally
demanding

. Stat : correct probability distributions, error bars, higher gain in
resolution ...

= Most existing statistical downscaling methods lack of physical

justification
- If correctly calibrated, it should work for converting a CDF from one
specific scale to another
- Representation of intermediate scales ? Fields structure ?

Scaling symmetries?

= Emerging approach : use multifractal cascades to simulate
subpixel variability
. By construction, scaling symmetries are respected 17
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Multiplicative cascades (2)

= Direct multiplicative
cascades : downscale the
multifractal flux @

= When H>O0:add a power-
law filter

= Relatively inexpensive
computationnally

= Well-suited for the
simulation of an ensemble
of high-resolution
realizations

Multiplicative cascade ®: i.i.d. multiplicative

increments
18
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An oceanic example (in progress)

~1° GYRE 35T detrended

1) GYRE 1/9°
Detrended SST

N\

SST GYRE 1/9° {detrended)

GYRE1°--> 1/9° downscaled a=2 H=045

. " 2) Aggregated oo i e
= | 1 detrended SST at 1° ” - : 1
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> CNes
@ A more developed example on ¢

rainfall data

" Rainfall is piecewise multifractal with specific
parameters

" Real data: Radar mosaics are considered
(1000x1000 km at 1km resolution)

® Scaling ranges 32-8km et 8-1km

20
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Inferring sub-pixel variability

= Possibility to simulate stochastic sub-pixel variability by extrapolating
multifractal scaling laws...

= By construction, accurate retrievement of the CDF at multiple scales

Rainfall composite data aggregated Rainfall composite data
at 32 km scale disaggregated at 8 km scale
MeteoFranceMosaics 32km Moszaics downscaling 32km --> 8km H=0
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MeteoFrance Mosaics rain rate (26/03/2008)




@ Multifractal downscaling 32-8 km Ccnes

(example on 1 map)

l0g,o( Pr( RR > x) ) o Pink = 32 km data
o 8 km T Blue = 8 km data
Green = Simulated 8km data

gl0{ Priiex) )

27 15

0.5
loglodx)

log;o(RR)



Inferring sub-pixel variability

= Possibility to simulate stochastic sub-pixel variability by extrapolating

multifractal scaling laws...

= By construction, accurate retrievement of the CDF at multiple scales

Rainfall composite data aggregated
at 8 km scale

MeteoFranceMosaics at Skm
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MeteoFrance Mosaics rain rate (26/03/2008)
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disaggregated at 1 km scale

Mosaics downscaling Sk --> 1km
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@ Multifractal downscaling 8-1 km Ccnes

(example on 1 map)

I loglO( Pr(RR >Xx) ) Pink = 8 km data
Blue = 1 km data
. 1km Green = Simulated 1km data

al0l Priix) )

log;o(RR)



@ 1) Variational control of diffusion Ccnes

parameters in NEMO

= Variational approach
" Twin experiments (obs = other simulation)

" Two trajectories with different resolutions

® High resolution trajectory provides « observations”

= Low resolution trajectory : viscosity and diffusivity are controlled
as function of space point f(x,y,z)

" Purpose : study the link between eddy viscosity
and local properties of the flow
25
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YAO

= Software dedicated to variational data assimilation
= Modular description of a numerical model

= Automatic computation of the adjoint model from
elementary jacobians

www.locean-ipsl.upmc.fr/~yao/
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YAO

Direct model

Passing through the graph in a topological order we calculate
the direct model : forward algorithm

27
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YAO

Adjoint model

Passing through the graph in a reverse topological order we
calculate the adjoint model : backward algorithm
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NEMO-YAOQ configuration

= Version of NEMO coded within YAO assimilation
software

" “Translation” of GYRE idealized configuration
= Available resolutions : 1°, 1/2° et 1/4°
= A4th order diffusive scheme (2"d order also available)

" Trajectories initialized by a 30Y GYRE (fortran)
spinup

29
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]/20

: *Ccnes
Two-resolution ¢

experiment

Init from spinup GYRE %4°

Constant viscosities & diffusivities (~1e +11 m4/s)

[
»

t=10 tf =t0 + 2 da

Obs = final
SST
aggregated
at 12°

Init from spinup (aggregation at %2°)

Constant background visc. & diff. (-1e+12 m4/s)

o
»

=10 tf =t0 + 2 day

Cost function minimization (YAQO)

Control parameters = spatial fields of bilapacian essties & diffusivities

30
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Minimisation of J(diffusivity, viscosity)

Evolution of cast function
3':' T T |

cost

.....................................................................................

12 14
a0 iteration
Gain of a factor 3 by controlling 3D diffusive c@iefents only

(future improvements expected by adding controhitilal conditions)

31
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Surface diffusive coefficients

|Surface Diffusivity| |Surface Viscosity]|

Background value = 1.0e +12 m4/s (background color)
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Surface patterns localization

|Surface Diffusivity| Velocity (u component) snapshot

33



@ Ccnes

Surface patterns localization

|Surface Diffusivity| Velocity (v component) snapshot
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Surface patterns localization

|Surface Diffusivity| Vorticity snapshot
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Vertical coherence of patterns

|Surface diffusivity] k=0 |Diffusivity| at lev&k5 (60 m depth)

Significant patterns even at level k = 10 (135 m)
Note that only SST data have been assimilated

36
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Conclusions

= Multifractal scaling properties:

= A statistical tool for OGCM/AGCM evaluation
= Multi-order = generalizes spectral tools

= Downscaling:

= Multifractal properties provide information on CDF transformations
when changing resolution

= Relatively inexpensive method, parameterizable
= Respects fundamental symmetries of the flow

= NEMO-YAO:

= Feasibility study for controlling diffusive parameters and comparing

with local properties of the flow 37
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Perspectives

= Multifractal scaling properties:

= To be validated in available higher-resolution NEMO simulations (1/54°)
= Comparison with ROMS

= Downscaling:

= Modifications needed for simulating accurate filamentary structures

= Method not specific to SST or rainfall, could be adapted for downscaling
wind forcings

= NEMO-YAO:

= Larger assimilation window, higher resolutions
= More complex diffusive schemes 38
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Questions?

Sebastien.verrier@locean-ipsl.upmc.fr

www.locean-ipsl.upmc.fr/~yao/



