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Introduction

Geophysical flow analysis

m Strong interest on the use of stochastic filters and ensemble
methods for data assimilation and forecasting

m Particularly interresting to combine a partially known evolution law
with noisy data

Difficulties

m Data and state variable evolution laws generally do not live at the
same scales
Example: in oceanography or meteorology, models at mesoscales
and image data at submesoscales =-smoothing of the data and use
of subgrid models

m Require stochastic version of the evolution law and a modeling of
the dynamics errors



Introduction

Requirements

m Construct a large scale stochastic evolution model

m Enabling a clear interaction with finer scale time series of Eulerian
data (such as images)

m An explicit (Eulerian) evolution law at least for the first moment

m Explore such an expression of Navier-Stokes equation with location
uncertainties

m Extend this expression for simple Geophysical models

m Use such models for variational assimilation or ensemble filtering
with image data



Location uncertainties

m Fluid particles displacement can be separated in two components:
a smooth differentiable components w

Uncertainty function uncorrelated in time but correlated in space
O'dBt

Displacement:

dX(x, t) = w(X(x, t), t)dt + o(X(x, t), t)dB;, with X(x,0) = x,
m Eulerian description of the velocity fields:
U(x, t) = w(x, t)dt + o(x, t)dB,.

m U should be solution of Navier Stokes equation derived from
Newton 2nd law

m = odB; differentiable in space



Noise term

Brownian motion field avatar

Bg(x \/— ZBL‘ (PV(X )

B:(x;) independant d-dimensional (with d = 2 or 3) standard Brownian
motions centered on fixed grid S = {x;,i =1,...,n} and ¢,
d-dimentional Gaussian function of standard deviation v

m zero mean Gaussian process with uncorrelated time increment

m Limiting spatial covariance such that

Q= lim E[BI(x)B!(y)] = toz,(x — y)la,

m Symmetric positive definite operator of finite trace in L2(IRY, )



Noise term

Brownian motion field avatar

m B" is a Gaussian process and hence tends in law to a zero mean
continuous process with the same limiting covariance Q

m Limiting process denoted in a formal way as:
Bi(x) = B, * ¢, (x) = /IR B: (X)), (x — x')dx/,
= Covariance trace of B tends to the same bound as tr Q
o0
trQ = ;E(Bt, e)? =E|BJ2 = "Ig‘go — Z/ ©2(x — x;)dx,
= td(47r1/2)*d/2

m The energy of the Brownian avatar hence depends on v but not on
the number of grid points



Noise term

White noise avatar and turbulent component

m Analogue of white noise avatar on

o(x,t)dB; = / o +(x.y)dB(y)dy.
Q

m o a linear bounded deterministic symmetric operator of
L2(RY, 1) — L3(S2) with null boundary condition.

m Assume to have a bounded norm (Hilbert-Schmidt operator):
Y lloex]® < oo
kEN

m spatial covariance of the turbulent component o.dB,

Q(x,s,y,t) = lim %dté(t —s) Z o(x,e,t) %@, (x;))o(e,y,t)*xp,(x;)

n—o0 —
=dti(t — s)o,, (x, t)oy, (Y, t),
= a(x, Y, t)dta(t - S)v

m Temporal integration of diagonal terms = quadratic variation
process



Noise term

White noise avatar and Turbulent component

o(x, t)dét:/at(X,y)dét(Y)dY-
Q

m Spatial covariance simplifies for homegeneous diffusion operator
a(x—y)

n

Q= lim ded(t - s),-l7 S (e, £) % gu(x — ) (e, 8) %y — x,)
i=0

=dti(t — s)o(e,t) xo(e,t)x ¢ 5,(x—y),
m Quadratic variation process

lim 1 Z[o’(o, t) % @, (x — x;)]dt :dt/Q (o (e, t) * o, (x))* dx

n—oo N 4

=3 (t)dt



Noise term

Kraichnan smooth model
dB(x \/_ZdBt DY % F(x — x;),

FS(x) = C|Ix||¢? 0<¢ <2
= Incompressible fluid d&$ = P x dBS.

m Spectral correlation define as

Ok).. — |l|—¢—d _ o 'y

® Quadratic variation process for a passband spectral cutoff ( 1Ij,.,;(k))

dtC; d — 127972
(2m)d d T(9)

d < £5(x), &5 (x) >j = CTH(LE — £5)d;



Stochastic Reynolds transport theorem

Volumetric rate of change

Volumetric rate of change of a scalar process g(x, t) transported by a
velocity field A
dX; = w(X¢, t)dt + o(X¢, t)dB;

d/ q(x, t)dx =
V(t)

d (V- i V. dt
[, e (9 () - waa 25090+ IV - ol2)de+

V - (qodB;)dx, with a¥(x,x, t) Za’k x, t)ol(x, t),

Example for the smooth Kraichnan model:

1
d q(x, t)dx = / [dg: + (V - (gqw) — §7Aq)dt + Vq'dgs]dx,
V(t) V(t)



Stochastic Reynolds transport theorem

Mass conservation

Mass conservation constraint on the transported volume:

1 &2 .
dpe + 'V - (pw)dt = 5(; B, )oY o|[*p)dt — Div(podB,).

For a fluid with constant density, mass preservation implies
V - (cdB,) =0,

V.-w=0,
V- (V-a)=0



Stochastic Reynolds transport theorem

Isochoric flows and isoneutral uncertainty

m Mass conservation constraint:

1 >’ A
t— =) ———(pal)dt = B
dip + Vpwd > . 8x,-xj(pa )dt = VpodB;

m If the uncertainty odB; lies on the isodensity surfaces:

ol = §i —
Vol

6(x —y).

m Small slope assumption (\/(0xp)>H9, p)?><< 9,p) = diffusion

tensor (and the quadratic variation) reads:

1 0 (%)
a(x) = 0 1 ay(x) |, a=—(0xp/d.p,0xp/0.p,0)
ax(x) ay(x) |e(x)]?



Stochastic Reynolds transport theorem

Isochoric flows and isoneutral uncertainty

m V.0 =0 = o constant along the depth axis 0,0 = 0,a, = 0 and
V-a=0.

m Mass conservation=- deterministic diffusion along the density
tangent plane:
dp

1
ot +Vp'w = 5 Zax;(aija)gp)
ij

m "lIsoneutral” or "lsopycnal” diffusion for unresolved mesoscale eddies
in large scales ocean dynamics simulations



Stochastic Reynolds transport theorem

Kraichnan model

m Mass conservation=- advection diffusion with multiplicative
stochastic forcing

1 .
dip + Vp'wdt — 7 > Apdt = VpodB,

ij
m For mean-field dynamics (w = EdX;) mean density evolves as
— - 1
m For isoneutral noise

1
Ocp+ Vp'w = S7Ap



Conservation of momentum

Conservation of momentum

Newton second law

d
= F
p /vadx ,

Considering stochastic conservation principle

d/ p(w(x, t)dt + o(x, t)dB;)dx = / F(x, t)dx.
V(t) V(t)

highly irregular = interpreted in the sense of distribution



Conservation of momentum

Conservation of momentum
For every h € C§°(R+):

/ h(t) /V Pl e = - / W (t) /v Lo £)dBdxdt+
/h(t)d/v(t) pw(t, x)dxdt.

Since both side of this equation must have the same structure, the forces
can be written as:

/h(t) /V(t) F(x, t)dt —/h’(t)/v o (t,%)dBrdx+

(t)
/ h(t) /V (t)(f(t,x)dxdt—l—O(t, x)dB;)dx.

First terms of both equations identical and cancel out.



Conservation of momentum

Conservation of momentum
We have:

d/ pw;dx = / (d(pwj)e + (V - (pwiw)
40) 40) zk: 20

|V - o||?pw;)dt + Div(pw;odB,))dx, with a¥(x, t) = 20' (x, t)ok(x, t).
K

—

)‘V«o‘:0+

As for the forces:

m Body force and external forces

G= / p(gdt — 29 x U)dx,
12

m Surface forces

1
s= [ Sdtnds= / ~V(pdt +dp) + p(AU+ V(Y - ),
A% %



Navier Stokes equations

Stochastic Navier Stokes equations

Incorporating (stochastic) mass preservation principle and the forces

expression:

ow T 6(al'jp) ow
((8 A 22 ”pﬁxax ,XJ: 0x; [v-0- ®ox; )t
WV podB, = (pg — 2pQ x w — Vp + p(Aw + %V(V -w))dt—

A A 1 A
Vdp—2pQ x (6dB:) + p(A(odBy) + §V(Div(o‘dBt))),

1 02

(aup)\vo o + IV -olfp)dt =V - (podB,).




Navier Stokes equations

Stochastic Navier Stokes equations

Equating slow terms and highly oscillating terms:

ow - d(aiip) ow
(E_FWV 22 ’Jpa 8x Z aXJ |VU 08,_

i

pg = 2p2 x W — Vp + i(Aw + §V(V “w)),

Vdp: = —wVTpadI%t —2pQ x (adét) 4L M(A(adét)—i—
1 A

§V(Div(crdBt)))7

1 0? "
dp+ V- (pw) = 53 5 (30)ig.0ma + IV - 7[?) = V- (pdB),
ij o



Navier Stokes equations

Stochastic Navier Stokes equations for the smooth Kraichnan model

Vx € Q,t €]0, T]

1
(%_\: +WVTW_7§AW)p:pg_2pQ xw— Vp+ puAw
Vdp: = —p(wV7)d§, +2pQ x d§, + pAdg,,

V.-w=0,

with boundary and initial conditions:

w-n=0 on 99, t€]0,T],
dé, =0 on 99, t€]0,T],

W, =W, in .



Navier Stokes equations

Stochastic Navier Stokes equations for incompressible and divergence free
general turbulent model

ow 7 1 0? i
(8 +wV'w 5 6,x( w))p = pg — 2pRQ x w — Vp+ pAw
Vdp: = —p(wV’ )adBt +20Q x 0dB; + pAodBy,
V.-w=0,
V-(V-a)=0

with boundary and initial conditions:

w-n=0 on 99, t €]0,T],
o =0 on 09, t €]0,T],

W), =W, in (.



Navier Stokes equations

Subgrid model

m Energy dissipating

T 82 2
/g;w ;m(aﬁw)dx:—/ﬂ|Vw||adx



Navier Stokes equations

Link to Smagorinsky model

m Smagorinsky model V - (c[|S[|S), [|S]* = 3 3_;(Ow + Ow')?
m Taking a = ¢||S|]I =
Zij Ox,Ox;ajjW = 2Zj 8Xj||5||8xjwk + IS|Awk 4 A|S||w*
Complemented by ¢ 3~ (|| S[|)0x w/ — A|S||w* provides the
standard trace free Smagorinsky subgrid stress

m The complementary term may be rewritten as

20, ) O (ISINW =2 0504 (IS)w’ — A[|S||w*

J J

1) 2
m (1) gradient term = compensated by a modified pressure
m Assuming (2) cancels we recover the Smagorinsky model

= ||S|| very smooth (respect V - Va = 0), or w leaving on
a manifold defined by the kernel of the Hessian of ||S||



Results

Simulation Navier-Stokes drift

ow
(8t

V-w=0, V-(V-a)=0, periodic boundary conditions

B
— iXj

m Eliminating the pressure with Leray projector P computed on a
divergence free wavelet basis

ow 1 0?
N vaw =P > = (ayw) —wV
5; ~ VAW [2 . 8x,'8xj(ajw) wV w],
= Implicit Euler scheme expressed on w(t,x) = Y- dj x(t) W7y (x)

92
(I — vstA)w"™t = w" —(5tIF’[ Z 0 (ajw") —w"V'w"].

m Variance tensor a;j(x) fixed from spatlal or temporal variance in a
local neighborhood



Results Green-Taylor

Green-Taylor vortex initial configuration isovalue subsequent time



Results Green-Taylor
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Results Crow instability

Crow instability vortex Smagorinsky and spatial variance



Results Crow instability

| Energy Spectrum at t=7.5
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Energy spectrum.



Results Crow instability
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Results Crow instability

Smagorinsky (643, t = 11) Spatial Cov. (64%, t = 11)




Navier Stokes equations under uncertainty

Shallow water under uncertainty

m General framework to derive large scale geophysical models

m Example Shallow Water

(a—Wh+WhVTw" 288 aiw")p = —gpVh

at Xi =X\ Y - gp us
',J)”

deh + (V - (hw") Zﬁxﬁxj(auh))dww(adst) —0,

iJ
V'dp = —p(w"V7)(adB,)",
Vv.oh=0,
V- (V-ah=o.



Navier Stokes equations under uncertainty

Shallow water under uncertainty

m General framework to derive large scale geophysical models

m Example Shallow Water (free surface expectation or uncertainty on
iso-height surface)

owh
(W +w'Viw - Z By, (ayw™))p = —gpV hy,
oh _
TR (hwh) — 5 Z 95 0x(azh) = 0,

(i)"
V- (V-ah=o.



Conclusion

m Derivation of a stochastic expression of Navier-Stokes

m |dentification of the mean evolution equation

m Subgrid term related to the variance of the random turbulent term
m ldentification of this variance through image data 7

No model for the variance or covariance evolution



Navier Stokes equations under uncertainty

m Derivation of geophysical models under uncertainty

m Ertel’s theorem ?

Surface quasi-geostrophic ?
m Oceanic model ?

Data assimilation from small scales observations
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