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Fronts and eddies on O(10) km
play a critical but poorly
understood role in:

* vertical and horizontal mixing
e global transport and uptake

* biogeochemical interactions

Observation of the upper ocean
on these scales is a key challenge.

A need for new analytical tools
for probing these scales.
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Microwave SST (AMSR-E) Infrared SST (AVHRR)

e o o E— EE EES EE— g e o e EEm G EEm e e e

—
1 144

NOAA16 SST 06 Jan 2003 0304Z—06R7Z
~ Copyrig ht 2003, CSIRO Marine Research, Hobart I

SST observations preserve information about the flow:

* Microwave observations have spatial resolutions of 20-50 km and
can penetrate clouds

* Infrared observations have spatial resolutions of 1 km but are
obscured by clouds




Dynamical reconstruction of subsurface flow (Lapeyre & Klein 2006)

(a) PE relative vorticity at 430m (b) SQG prediction of relative vorticity at 430m
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Lapeyre & Klein (2006)

* Surface quasigeostrophic (SQG) model: Interior streamfunction
slaved to surface density (temperature) anomalies.
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e Streamfunction is smoothed version of temperature: Microwave
observations reconstructs flow with resolution of O(100) km.
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* Derive super-resolved SST images by combining microwave
observations with statistical knowledge from infrared images

* Exploit spatial aliasing of small scales by coarse observations
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Aliasing of sparse observations

Fourier transform on coarse (M x M) grid: H
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Fourier transform on fine (N x N) grid:
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Coarse-grid modes are superposition of fine-
grid modes in same aliasing set.
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Reconstruct super-resolved image by
combining observations and prediction.
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Aliasing of sparse observations

Fourier transform on coarse (M x M) grid:

coarse 1 < IH (mk+n
l/}k’l =W E 1/} (mH,nH)eH( k+nl)

m,n=1

Fourier transform on fine (N x N) grid:

| 1 L

fine _ ih(mk+nl )

i ——N2 2 Y (mh,nh)e

m,n=1

Coarse-grid modes are superposition of fine-
grid modes in same aliasing set.

coarse ine Ig mOd M = k
Y= Yl
o kzl Y T modM=1

Reconstruct super-resolved image by
combining observations and prediction.
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Filtering sparse observations

Data assimilation or filtering seeks the best-guess estimate of the
state of the system by combining noisy, incomplete observations

with an internal forecast model.

time

M x M observations of each resolved

mode + aliased modes




Filtering sparse observations

Data assimilation or filtering seeks the best-guess estimate of the
state of the system by combining noisy, incomplete observations
with an internal forecast model.

1. Forecast step:

® Make prediction for N x N modes

/. using quasi-linear stochastic model.

9,0 =—(y—iw)0(t)+ oW (1)

® O Forecast mean and covariance:

<6>’ qu - <0;6q>

Tune parameters to give correct
energy and timescales estimated from
> infrared observations.

time



Filtering sparse observations

Data assimilation or filtering seeks the best-guess estimate of the
state of the system by combining noisy, incomplete observations
with an internal forecast model.

2. Update step:

O Combine N x N prediction (-) with
M x M observation (~) using Kalman
filter solution:

(6,)=(1-KG){0_)+ K6
R, =(1-KG)R.
Optimal solution when dynamics and

observation operator are linear with
> unbiased uncorrelated Gaussian noise.

time
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Filtering sparse observations

Data assimilation or filtering seeks the best-guess estimate of the
state of the system by combining noisy, incomplete observations
with an internal forecast model.

3. Smoothing step:

® Apply RTS smoother after Kalman filter
to remove unphysical jumps in the
temperature field.

Resulting super-resolved SST estimate
® O is a statistical distribution with given
mean and covariance.

Effective resolution given by Nx N
forecast model, rather than M x M
> observations.

time



Filtering sparse observations

Data assimilation or filtering seeks the best-guess estimate of the
state of the system by combining noisy, incomplete observations

with an internal forecast model.

Filtering is not the same as projection
(onto EOF basis, BC/BT modes etc).

It is a statistical inference about the
full system constrained by
observations.

® ) Information about unobserved
variables obtained because the
evolution operator induces
correlations with observed variables.

time



Test in QG simulations driven by Forget (2010) hydrography.
Assume that surface density anomalies are dominated by SST.

Synthetic daily temperature observations over a 90-day period
with both microwave (40 km) and infrared (5 km) resolutions.

Infrared observations used to learn stochastic parameters.
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Test in QG simulations driven by Forget (2010) hydrography.
Assume that surface density anomalies are dominated by SST.

Synthetic daily temperature observations over a 90-day period
with both microwave (40 km) and infrared (5 km) resolutions.

Infrared observations used to learn stochastic parameters.



SST snapshots: Antarctic Circumpolar Current
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Temperature variance spectrum: <|6’(k)|2>

Antarctic Circumpolar Current Gulf Stream Equatorial Pacific
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» Effect of aliasing can be seen in spurious variance in observations
near the limit of resolution

e Super-resolved estimate correctly redistributes variance to small
scales
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Sensitivity to clouds and observing period:

Normalized RMS error Normalized RMS error
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* Accuracy of small-scale statistics calculated using high-resolution
images depends on quality of data

 Model effect of imperfect data by randomly discarding frames
(“clouds”) or shortening observing period



Upper ocean flow reconstruction

* SQG model: elliptical equation for streamfunction with boundary
condition given by SST

2
w 2 - _ surf
dz\ N~ 0z 0z 0 f
Zero interior potential Dynamics driven by surface
vorticity anomaly temperature (density)

* Lapeyre and Klein (2006), Isern-Fontanet et al. (2006): effect of
interior PV anomalies in upper ocean can be modeled by
replacing N(z)/f with an “effective Prandtl ratio” o,.
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Upper ocean flow reconstruction

* Fit o, by matching EKE at surface with low-resolution altimetry.
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* Geostrophic streamfunction at depth: Gulf Stream

Streamfunction at 4 m Streamfunction at 105 m Streamfunction at 222 m
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Antarctic Circumpolar Current
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Upper ocean flow reconstruction

Relative enstrophy profile (s 1)
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Even with perfect observations of SST, SQG methods have a
depth of validity varies regionally.

Argues for inclusion of interior dynamics: Lapeyre (2009), Ponte

and Klein (2013), Wang et al. (2013).

However, super-resolved SST results in significantly improved
surface mode reconstruction compared with raw observations.
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SQG projections require high-resolution SST observations to
resolve O(10) km ocean flow.

Combine microwave images with statistical information from
infrared observations to construct super-resolved SST images.

Strong regional variation due to influence of internal dynamics.
However, ‘surface mode” is well captured in all cases.




