Analysis of small scales from satellite SST observations

E. Autret, B. Chapron Laboratoire d'Océanographie Spatiale, Ifremer, Brest

r e m e

Objective :

Identify descriptors for the characterization of small scales (captured by satellite observations):

- Spectral approach
- Contour analysis (curvature, winding angle)
- Small scale spatial variability / mesoscale

to help the reconstruction of fine-scale textured structures in missing data interpolation of SST observations and reconstruction of high resolution ocean surface current.

In this presentation :

- Some slides on SST observations
- Proposition for SST super-resolution

J

Big data:

AVHRR18 G-NAVO-L2P-v1.0	2006-Jan-25	Present	AVHRR-3	10
AVHRR19 G-NAVO-L2P-v1.0	2009-Oct-5	Present	AVHRR-3	10
AVHRR NAVOCEANO L2 2KM MCSST LAC	2002-Aug-5	Present	AVHRR-3	2
AVHRR NAVOCEANO L2 2km MCSST FRAC	2009- <u>Jun</u> -10	Present	AVHRR-3	2
AVHRR NAVOCEANO L2 9KM MCSST GAC	2001-Aug-29	Present	AVHRR-3, AVHRR-2	9
EUR-L2P-ATS NR 2P	2005-Jan-31	2009-Sep-30	AATSR	1
EUR-L2P-AVHRR16 G	2005-Jan-31	2006-Aug-14	AVHRR-3	10
EUR-L2P-AVHRR16 L	2005- <u>Feb</u> -1	2005-Oct-26	AVHRR-3	2
EUR-L2P-AVHRR17 G	2005-Jan-31	2007- <u>Feb</u> -27	AVHRR-3	10
EUR-L2P-AVHRR17 L	2005-Jan-31	2007- <u>Feb</u> -26	AVHRR-3	2
EUR-L2P-AVHRR METOP A	2009-Sep-30	Present	AVHRR-3	1
EUR-L2P-SEVIRI SST	2005-Jan-31	Present	SEVIRI	5
JPL-L2P-MODIS A	2006- <u>Jun</u> -30	Present	MODIS	1
JPL-L2P-MODIS T	2006-Oct-1	Present	MODIS	1
NAVO-L2P-AVHRR17 G	2006- <u>Jun</u> -21	2009- <u>Jul</u> -6	AVHRR-3	10
NAVO-L2P-AVHRR17 L	2006- <u>Jun</u> -21	2008-Sep-16	AVHRR-3	2
NAVO-L2P-AVHRR18 G	2006-Jan-25	Present	AVHRR-3	10
NAVO-L2P-AVHRR18 L	2006-Jan-25	2009-Sep-9	AVHRR-3	2
NAVO-L2P-AVHRR19 G	2009-Oct-5	Present	AVHRR-3	10
NAVO-L2P-AVHRR19 L	2009-Aug-26	Present	AVHRR-3	2
NAVO-L2P-AVHRRMTA G	2007-Sep-26	Present	AVHRR-3	10
NEODAAS-L2P-AVHRR17 L	2008-Sep-2	2010-May-18	AVHRR-3	2
NEODAAS-L2P-AVHRR18 L	2008- <u>Jul</u> -26	2009-Aug-18	AVHRR-3	2
NEODAAS-L2P-AVHRR19 L	2009-Sep-6	Present	AVHRR-3	2
OSDPD-L2P-GOES11	2006- <u>Dec</u> -22	2011- <u>Jul</u> -10	GOES-11 Imager	5
OSDPD-L2P-GOES12	2006- <u>Dec</u> -22	2010- <u>Jun</u> -18	GOES-12 Imager	5
OSDPD-L2P-GOES13	2010- <u>Jun</u> -21	Present	GOES-13 Imager	5
OSDPD-L2P-GOES15	2012- <u>Mar</u> -8	Present	GOES-15 Imager	5
OSDPD-L2P-MSG02	2009-Nov-22	Present	SEVIRI	5
OSDPD-L2P-MTSAT1R	2009-Nov-22	2010- <u>Dec</u> -22	MTSAT 1R Imager	5
OSDPD-L2P-MTSAT2	2010-Sep-1	Present	MTSAT 2 Imager	5
REMSS-L2P-AMSRE	2002- <u>Jun</u> -1	2011-Oct-4	AMSR-E	25
REMSS-L2P-TMI	1998-Jan-1	Present	ТМІ	25
UPA-L2P-ATS NR 2P	2008-May-27	2012- <u>Apr</u> -8	AATSR	1
VIIRS NPP-NAVO-L2P-v1.0	2013-May-20	Present	VIIRS	.8

AQUA AMSRE - 06-May-2010

lfremei

reme I

www.ifremer.fr

е Г.

frem

Production of « high resolution » SST data sets :

 \sim 10 global SST analysis (2 km to 25 km) produced on a daily basis currently available.

Main steps :

- Data collection (~ 80 Go / day)
- Data selection and intercalibration
- SST gridded fields reconstruction (Optimal Interpolation)

ىھ

Ξ

J

06-May-2010 17:00 modis aqua

w.ifremer.fr

>

ىھ

e B 06-May-2010 17:00 amsre

Exploring co-localized IR/MW data from AQUA

06-May-2010 17:00 modis aqua

Tfremer-

06-May-2010 17:00 modis aqua

06-May-2010 17:00 amsre

06-May-2010 17:00 SST anomaly: modis aqua - amsre

06-May-2010 17:00 SST gradient - amsre

SST - Modis(L2P)

SST – AMSRE(L3)

www.ifremer.fr

frem er-

www.ifremer.fr

iremer

SST – Modis(L2P)

SST – AMSRE(L3)

MW observation system could be considered as an average filter (here ~60 km) ~ 1/k filter for scales smaller than 250 km

=> Inverse filter ?

Proposition 1 : x k

• MW observation system could be considered as an average filter (here $\sim 60 \text{ km}$) $\sim 1/\text{k}$ filter for scales smaller than 250 km

=> Inverse filter ? 40°N **Proposition 1** : x k 22 20 39°N 18 38°N 16 14 37°N 12 36°N 10 63°W 61°W 65°W $64^{\circ}W$ 62°W 66°W

r e m e l

Small scales / mesoscale

• MW observation system could be considered as an average filter (here \sim 60 km) \sim 1/k filter for scales smaller than 250 km

=> Inverse filter ?

ww.ifremer.fr

≥

ىە

e M

• MW observation system could be considered as an average filter (here $\sim 60 \text{ km}$) $\sim 1/\text{k}$ filter for scales smaller than 250 km

reme

Small scales / mesoscale

• MW observation system could be considered as an average filter (here \sim 60 km) \sim 1/k filter for scales smaller than 250 km

=> Inverse filter ?

Proposition 1 : x k

Proposition 2 : add the missing energy whith random phases

Proposition 3 : add a phase information. Estimate the variance explained by the enhancement of large gradients present in low resolution field

fremer_

lfremer_

Proposition 3 :

1/ gradient profile model (density function of a generalized exponential distribution) for HR and LR-> 'transformation model'

remer

Proposition 3 :

1/ gradient profile model (density function of a generalized exponential distribution) for HR and LR-> 'transformation model'

2/construction of new gradient field

J

Ξ

ىە

Proposition 3 :

1/ gradient profile model (density function of a generalized exponential distribution) for HR and LR-> 'transformation model'

2/construction of new gradient field

3/ LR SST field « + » reconstructed gradient field :

Minimization of :

 $E(I_h | I_l, \tilde{\nabla I_h}) = E_i(I_h | I_l) + \beta E_g(\nabla I_h | \tilde{\nabla I_h})$

with
$$E_i(I_h | I_l) = |(I_h * G) \downarrow -I_l|^2$$

 $E_g(\nabla I_h | \tilde{\nabla I_h}) = |\nabla I_h - \tilde{\nabla I_h}|^2$

=> new HR SST field

Proposition 3 :

1/ gradient profile model (density function of a generalized exponential distribution) for HR and LR-> 'transformation model'

2/construction of new gradient field

remer

Proposition 3 :

1/ gradient profile model (density function of a generalized exponential distribution) for HR and LR-> 'transformation model'

2/construction of new gradient field

remer

Proposition 3 :

1/ gradient profile model (density function of a generalized exponential distribution) for HR and LR-> 'transformation model'

2/construction of new gradient field

J

r e m

Small scales / mesoscale

• MW observation system could be considered as an average filter (here \sim 60 km) \sim 1/k filter for scales smaller than 250 km

=> Inverse filter ?

Proposition 1 : x k

Proposition 2 : add the missing energy whith random phases

Proposition 3 : add a phase information. Estimate the variance explained by the enhancement of large gradients present in low resolution field

Proposition 4 : **Proposition 3** + contour characterization : statistical analysis of the tracer level-set geometry, in particular the conditional statistics of small-scale isoline meanderings along larger scale fronts

Proposition 4 : **Proposition 3** + contour characterization

fremer

Conclusion

Descriptors for the charaterization of small scales have been investigated :

Spectral approach :Spectral slopes in the mesoscale and submesoscale range estimated from different SST datasets have been compared and the sensitivity to resolution and noise level has beeb investigated thoroughly. The global distribution of spectral slopes estimated from AVHRR Metop observations was then obtained.

Spectral approach

SST wavenumber spectra in the 8-70 km band

resolution in the 8-70 km wavelength band calculated from METOP-A-AVHRR SST data (~1 km resolution).

Conclusion

Descriptors for the charaterization of small scales have been investigated :

Spectral approach :Spectral slopes in the mesoscale and submesoscale range estimated from different SST datasets have been compared and the sensitivity to resolution and noise level has beeb investigated thoroughly. The global distribution of spectral slopes estimated from AVHRR Metop observations was then obtained.

Coherent structures essentially sign in the phase information of the satellite snapshots, and we propose the analysis of the **spatial conditional variability of small scales relative to larger scales**.

- Estimate the variance explained by the enhancement of large gradients present in low resolution field

- Statistical analysis of the tracer level-set geometry