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Thermodynamics 
Success Story

Macro-scale laws from micro-scale processes :

Pressure & temperature from molecule 
movement

Second Law: Entropy increases
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Dream

Derive Universal Ecological Laws from

Physiology

Population dynamics

Genetics
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Producers

Consumers

Degraders

Systems Ecology
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Systems Ecology

Very few universal ‘Laws of Ecology’ have 
emerged so far

‘Healthy’ ecosystems maximise thoughput

Complex ecosystems are more stable

Evolution always produces more complex 
systems
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Evolution

Sole universal structuring principle

almost faithful copying 
– reproduction + mutation 

selection

No simple emergent consequences

no system-wide optimization

no ‘progress’
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Space

Why space is important

Different theoretical approaches

Patch models

Levins’ metapopulation

Reaction-diffusion models

Cellular automata (& other individual-based models)

(Correlation dynamics)
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Parasitoid

http://www.idw-online.de

jeudi 19 septembre 2013



looking for hosts

Drosophila melanogaster larvae

CPB Silwood Park
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Oviposition

http://muextension.missouri.edu
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Oviposition

http://www.anbp.org
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Emergence

http://whatcom.wsu.edu
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Life Cycle
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Life Cycle
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Life Cycle
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Life Cycle
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Life Cycle
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Nicholson-Bailey

Host
Parasitoid
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NB plus compétition

Host
Parasitoid
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Heterogeneity
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Localisation
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A Foraging Sea-Elephant
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Heterogeneity

jeudi 19 septembre 2013



Hassell & May 1974
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Hassell & May 1974
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Aggregation
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Aggregation
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Space is Important

May determine ecological stability

May determine persistence of species

Allow more species to coexist

Modify selective pressures

…
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Space is a Pain

Space makes life difficult for theoreticians

– as anyone who has struggled with spatially 
explicit models is likely to know
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Modeling Space
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Reaction-diffusion
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Reaction-diffusion
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Reaction-diffusion
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Reaction-diffusion
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Multi-species Reaction-diffusion
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innovation is to allow key model parameters to vary spatially, reflecting
habitat heterogeneity.
Specifically the dynamics of the system is described by

�E
�t

=
�
�x \D(x)

�E
�x++rEE(G(x)&aEE&bEN ), (2.1a)

�N
�t

=
�
�x \d(x) �N�x ++rNN(g(x)&aNN&bNE), (2.1b)

which is the Lotka�Volterra competition model with difusion; see, for
example, Murray (1989). The functions D(x) and d(x) measure the diffu-
sion rates. The intrinsic growth rates of the organisms are reflected by the
positive parameters rE and rN . These are scaled so that the maximum
values of the functions G(x) and g(x), reflecting the respective carrying
capacities, are unity. The positive parameters aE and aN measure the effects
of intraspecific competition, while bE and bN are the interspecific competi-
tion coefficients.
As a first step in describing environmental heterogeneity we focus on a

model in which it is the dispersal and carrying capacity that vary (i.e., the
functions D(x), d(x), G(x), and g(x) are spatially periodic). We assume
that l is the periodicity of the environmental variation and accordingly
define

D(x)=D(x+l), d(x)=d(x+l ), G(x)=G(x+l),

g(x)=g(x+l ).

We further assume that there are no engineered microbes initially; that
is E(x, 0)#0. So, the natural microbes, N(x, 0), satisfy the equation

�
�x \d(x) �N�x ++rNN(g(x)&aNN )=0.

The engineered organisms are then introduced at a release site, which in
our case we shall take as the origin. This initial distribution in E(x, t) is
represented by the initial conditions

E(x, 0)={H(x)>0
0

if |x|�xc

if |x|>xc ,
(2.2)

where H(x) is a one-humped continuous function of x and xc is a positive
constant, typically as used in Fig. 1.

4 CRUYWAGEN ET AL.
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Competition in Space

File: 653J 125505 . By:MC . Date:23:01:96 . Time:09:55 LOP8M. V8.0. Page 01:01

Codes: 2242 Signs: 1348 . Length: 45 pic 0 pts, 190 mm

Fig. 1. A travelling wave solution connecting the native-dominant steady state to the
coexistence steady state in a spatially uniform environment. Parameter values used were #e=
#n=0.5, D(x)=d(x)=G(x)=g(x)=1, and r=2, so that the coexistence state is the only
stable state.

We further assume that the environment consists of two kinds of homo-
geneous patches, say Patch 1 of length l1 and Patch 2 of length l2 , connected
alternately along the x-axis. These patches are such that l=l1+l2 . We take
Patch 1 as the favourable patch and Patch 2 as the unfavourable patch. In
the unfavourable patches the diffusion and carrying capacity of the
organisms are less than in the favourable patches. Biologically this could
occur because the unfavourable patch is a hostile environment that either
limits a population or interferes with its dispersal. Correspondingly, the
functions D(x), d(x), G(x), and g(x) are periodic functions of x. In Patch 1,
where ml<x<ml+l1 for m=0, \1, \2, ...,

D(x)=D1>0, d(x)=d1>0;
(2.3)

G(x)=1, g(x)=1.

In Patch 2, where ml&l2<x<ml for m=0, \1, \2, ...,

D(x)=D2>0, d(x)=d2>0;
(2.4)

G(x)=G2 , g(x)=g2;

Since Patch 1 is favourable,

D1�D2 , d1�d2 ;

1�G2 , 1�g2 .

In Fig. 2 we show, an example, of how the diffusion of the engineered
microbes could vary in space.
At the boundaries between the patches, say x=xi , with

x2m=ml, x2m+1=ml+l1 for m=0, \1, \2, ...,

5SPREAD RISK
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Diffusion approach

Advantages

many mathematical tools

Disadvantages

becomes very difficult if movement is non-
random

becomes very difficult if individuals are ‘large’
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Individuality

Individuality is crucially important

in particular in spatially explicit settings

demographic stochasticity inevitable
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Hypercycle

Species 1

Species 2

Species 3

Species n

…
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Hypercycle
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Hypercycle

Species 1

Species 2

Species 3

Species n

…

Parasite

jeudi 19 septembre 2013



Hypercycle

Parasite
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A Lattice of Sites
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Death
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Faithful Reproduction
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Faithful Reproduction
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Boerlijst & Hogeweg’s (1991)
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Boerlijst & Hogeweg’s (1991)
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van Ballegooijen & Boerlijst 2004

jeudi 19 septembre 2013



Spatial Hypercycles

Boerlijst & Hogeweg’s (1991) hypercycles

• Tend to form rotating spirals

• Parasites swept outward

• Selection on rotation speed
– favouring higher mortality
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Spatial evolution

Spirals ‘unit of selection’

• Rotation speed selected trait

But:

• Rapidly rotating spirals ‘fly apart’

• Evolution towards criticality
– Rand, Keeling & Howard 1995
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Coral Dynamics

begun with C, MA, and TA each randomly covering 10%

of the landscape (with the remaining 70% set as CCA) and

run in the presence of a mixed herbivore assemblage
showed the emergence of spatial clustering of coral during

an initial 10-year phase (Fig. 2, and evidenced by a vari-

ance-to-mean ratio of coral density across the landscape
ephemerally exceeding 1.0, not shown). Once the C

achieved sufficient coverage to outcompete algal species,

coral spread to become pervasive across the domain.
To isolate the influence of the two types of herbivory in

the model, simulations were run including fish and sea

urchins in isolation. By definition, herbivores increased the
mean mortality of turf and macroalgae. While fish foraged

in a random manner, sea urchins created distinct ‘halos’,

i.e., areas that were foraged regularly and had strongly
reduced fleshy algal cover (e.g., Fig. 2).

The benthic configuration of simulations run from a

range of initial conditions for ‘branching’ coral and MA
coverage (where, in all cases, each benthic type was scat-

tered randomly across the domain in a manner similar to

what might be found after a destructive storm event) with
typical densities of herbivorous fishes revealed two

attractors, one dominated by corals and one by fleshy algae

(Fig. 3a). Simulations started with at least 20% coral cover
ultimately arrived at the ‘coral’ attractor (*75% coral

cover and\5% macroalgae) while simulations started with

lower coral cover arrived at the ‘macroalgae’ attractor
(*85% macroalgal and\5% coral) indicating a basin of

attraction for each attractor. When simulations were run

with herbivorous sea urchins instead of fish, one attractor
emerged. Regardless of starting configuration of the ben-

thos, all simulations arrived at a coral-dominated state
(*80% coral and *10% macroalgae; Fig. 3b).

The pattern by which a coral grows affects its ability to

compete for space with fleshy algae. In contrast to simu-
lations using ‘branching’ corals (Fig. 3a, b), simulations

with the same level of herbivory due to fish or sea urchins

but including ‘massive’ corals had only algal-dominated
attractors. The attractor for models with only herbivorous

fish and massive corals was dominated by macroalgae

([80%) with little coral (Fig. 3c). The attractor with sea
urchins and massive corals was at approximately 75%

macroalgae and 15% coral (Fig. 3d).

The density of herbivores significantly changed the
results of the simulations. Starting with a randomized

landscape composed of 10% each ‘branching’ coral, MA

and TA, there was a clear change in results as fish density
increased (Fig. 4a). At low densities, the attractor was a

macroalgal-dominated state, with coral covering \5% of

the benthos. However, when herbivorous fish biomass was
21 g m-2 or greater, the attractor was essentially reversed,

with coral cover exceeding 80% and macroalgae rare.

Across a similar range of herbivory potential, no distinct
threshold effects were observed for sea urchins, with all

attractors being dominated by corals ([70%; Fig. 4b).

Simulations using ‘massive’ corals showed the same
behavior in attractor state as fish density was increased

(Fig. 4c); however, unlike for branching coral, variations in

sea urchin density altered the attractor (Fig. 4d). For all sea
urchin densities, the final coral state was directly related to

the available algal-free space in the domain resulting from

sea urchin grazing. As the density increased above 1.2 sea
urchins m-2, the overlap of urchin halos (which were

randomly assigned in the domain) buffered the effect of

increasing sea urchin density, causing the final coral cov-
erage to asymptote.

Discussion

Model results showed clear transitions in outcomes of
benthic competition as a function of spatial constraints

when the model was run using a realistic range of param-

eter values. Similar patterns of context-specificity of ben-
thic dynamics have been noted by Mumby et al. (2007) and

Fig. 2 a Time series of benthic community development over
60 years showing percent coverage for coral, turf algae (TA) and
macroalgae (MA) starting from a random initial configuration of 10%
of each type (remaining 70% coverage was by crustose coralline
algae, CCA) and including both herbivorous fish and sea urchins.
Snapshots of benthic landscape at b 5, c 15 and d 30 years showing
coverage by coral (red), turf algae (blue), macroalgae (green) and
CCA (purple). Note that ephemeral single cells of CCA are largely
caused by spatially uncorrelated herbivory by fish while larger circles
of CCA are caused by spatially correlated herbivory by sea urchins,
consistent with so-called ‘urchin halos’

Oecologia (2012) 168:1079–1090 1085

123

Sandin & McNamara 2012
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Cellular Automata

+ Nice toys

+ Colourful movies

– Difficult to generalise

– Difficult to obtain deeper insight

jeudi 19 septembre 2013



Viscous populations

Probabilistic Cellular Automata

Computer Simulations

Mathematical characterisation

• Correlation dynamics
– Matsuda et al. (1992) ecological application
– Van Baalen & Rand (1998), Van Baalen (2000), 

Ferrière & Le Galliard (2001), Lion & van Baalen 
(2007)
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Bookkeeping
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Morris (1997)
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Dynamics of densities

no space
(“mean field”)
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Pairs of Neighbours

S o

S A

o A

o o

A A

S S

�ʜ� �ɴɪ� �� ��ʟ���ɪ�ɴ 635

so-called ‘‘correlation dynamics’’ models is that
although the precise state of the lattice is unpre-
dictable, it is nevertheless possible to work out the
expected rates of change of certain average quantities
such as the proportion of sites in state i or the
proportion of pairs in state ij (see Durrett, 1988 and
Durrett & Levin, 1994 for an outline of the underlying
theory).

The resulting differential equations completely
bypass the need of keeping track of the entire lattice.
Space is thus modeled implicitly. Since the dynamics
of a system with very many dimensions (that is, equal
to the number of sites in the lattice) is reduced to a
system of much lower dimensionality, inevitably
information is lost. Where appropriate we will briefly
discuss the errors that are associated with the
approximation, but for a more in-depth discussion we
refer to Morris (1997).

3. Pair Dynamics

3.1. ɢʟ�ʙ�ʟ �ɴ� ʟ���ʟ ��ɴ�ɪ�ɪ��

The proportion of sites in state i, denoted by pi,
corresponds to the classical concept of the ‘‘density’’
of i. Correlation dynamics models, however, extend
the density concept to larger configurations than
single sites. The simplest of these is the pair of
neighbouring sites, and therefore these models are
called ‘‘pair approximation’’ models. Just as with the
single sites, the ‘‘pair density’’ pij denotes the
proportion of all pairs that happens to be in state ij.
(Notice that since every site in the lattice is connected
to n neighbours it forms part of n pairs.) Thus if a pair
of neighbouring sites is picked, the probability that
they are in states i and j is pij.

The main advantage of knowing the proportions of
pairs is that the conditional probabilities

qj�i =
pij

pi
(3)

can be calculated, which gives the probability that a
given neighbour of a site in state i is in state j. Because
qj�i specifies the density of species j as experienced by
the average i individual (which may be different from
the global density pj) one may therefore speak of qj�i

as a local density (Matsuda et al., 1992 employ the
term ‘‘environs density’’).

Incidentally, because we assume that the number of
neighbours is constant, the ‘‘singlet’’ density pi follows
from the pair densities,

pi = �
j

pij (4)

Would the number of neighbours vary from site to
site this will not hold, and the pi would have to be
tracked separately (Morris, 1997).

3.2. ʙ�������ɪɴɢ

The technique boils down to tracking changes in
the proportions of pairs, in much the same way as one
would track the occupancy of single sites. This
requires bookkeeping of how events change the
proportions of all pair combinations. This bookkeep-
ing is complicated because members of a pair form
part of other pairs and therefore the rates of change
in the proportion of a particular pair combination is
affected by events in neighbouring pairs. For example,
a given So pair may become an SS pair because the
S individual reproduces into the o-site, but it can also
become an SS pair because of a migration or
reproduction event in a pair formed by the empty site
and its other neighbours.

Averaging over all possible pairs on the lattice, and
averaging over all possible events that may occur at
these pairs leads to a set of differential equations that
give the expected rate of change all possible pair
densities pij. With three states, there are nine different
pair combinations, but symmetry relations (pij = pji)
and the fact that the pair densities sum to one, leaves
us with a set of five differential equations, for
poS(= pSo), pSS, PAo (= poA), pAS (= pSA) and pAA.
These equations take into account all transitions
shown schematically in Fig. 2; the full equations are
given in Appendix A.

3.3. �ʟ���ʀ�

An elementary aspect of these differential equations
is that the rates of change in the pair frequencies
depend on frequencies of configurations larger than
pairs. Take for example the conditional probabilities

Fɪɢ. 2. The possible transitions between the state of doublets
(pairs of neighbouring sites). Pairs that have a symmetric
counterpart are shaded.
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Correlation Dynamics
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A Cascade

The dynamics of Singletons depend on Pairs, who 
depend on Triplets, who depend on…

Closure approximation
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Altruism in Viscous Populations 7 mard., déce. 2, 2008 (9:03) 

 

Figure 3. If the altruists are rare, they do not affect global dynamics of the nonaltruists, and 

their dynamics are governed by the transitions between three types of doublets. 

Invasion 

The question now is whether a very small population of altruists will be able to invade 

the resident population or not. If the altruists are rare, they do not affect global dynamics 

of the resident nonaltruists, and their dynamics of the altruists are governed by the 

remaining three differential equations (see Fig 3): 

 p
•
 øA =  + [ (bA + mA) 

n – 1
n   qA|ø ] p

–
 øø  –  [ dA + mA 

n – 1
n   qø|A ] pøA 

  – [ (bS + mS) 
n – 1

n   qS|ø ] pøA  +  [ dS + mS 
n – 1

n   qø|S ] pSA 

  – [ (bA + mA) 
n – 1

n   qA|ø + 
1
n  bA ] pøA   

   +  [ dA + mA 
n – 1

n   qø|A ] pAA 

 p
•
 SA =  + [ (bA + mA) 

n – 1
n   qA|ø ] p

–
 Sø  –  [ dA + mA 

n – 1
n   qø|S ] pSA 

  + [ (bS + mS) 
n – 1

n   qS|ø ] pøA  –  [ dS + mS 
n – 1

n   qø|S ] pAS 

 p
•
 AA =  + 2[ (bA + mA) 

n – 1
n   qA|ø + 

1
n  bA ] pøA   

   –  2[ dA + mA 
n – 1

n   qø|A ] pAA 

where bA = bA(qA|A) and bS = bS(q
–
 A|S) = bS(0). 

The structure of this set of equations is quite simple. Using the rules for conditional 

probabilities 

 qA|ø pøø = 
pAø

pø
  pøø = pAø qø|ø 

 qA|ø pSø = 
pAø

pø
  pSø = pAø qS|ø 

we can write this set of differential equations in matrix form 
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Invasion of a mutant

Dynamics of mutant given by sets of equations

• Fitness: dominant eigenvalue

• Unit of adaptation: corresponding eigenvector

�. ��ɴ ʙ��ʟ�ɴ �ɴ� �. �. ʀ�ɴ�636

of the type qh�ij, which give the probability that a

neighbour of the i in an ij pair is occupied by an h.

(For example, the probability that an oS becomes an

AS pair because an A-neighbour of the pair

reproduces will be proportional to bAqA �oS). From

elementary probability theory we have,

qh�ij =
phij

pij
(5)

which implies that qh�ij depends on the frequency of hij
triplets. In fact, the differential equations will depend

on the frequencies of more complex configurations, as

birth rates depend on the entire configuration

surrounding reproducing individuals.

Hence if we are to describe the dynamics of pairs

in terms of pair frequencies (i.e. ‘‘close’’ the system)

we have to estimate or approximate the distribution

of these larger configurations in terms of pair

frequencies. For conditional probabilities of the type

qh�ij the most straightforward strategy is to adopt the

so-called pair approximation, i.e. to assume that

qh�yj � qh�i (6)

i.e. the probability to find an h next to the i is assumed

not to be affected by i’s other neighbour j (Matsuda

et al., 1992).

This assumption may introduce a significant error.

Consider, for example, qA�SA. Under the pair

approximation assumption, this would be approxi-

mated by qA�S, a quantity that is very small when the

altruists are rare (on average, the non-altruists do not

‘‘see’’ altruists). However, qA�SA is the probability that

the non-altruist has a second altruistic neighbour.

This implies that the S in question is likely to be in

a region where A is locally abundant, and that qA�SA

therefore does not approximate zero. The ‘‘standard’’

pair approximation thus ignores an important aspect

of spatial structure. In the discussion we will present

preliminary results using an improved approximation.

4. Mean-field Dynamics

Before analysing the spatial dynamics, it is

instructive to consider the equivalent non-spatial

(‘‘mean-field’’) model. When the migration rates mA

and mS become very large, the populations become

‘‘well-mixed’’ and the dynamics are governed by the

following differential equations:

dpS

dt
=[(b0 +BpA)po − d]pS

dpA

dt
=[(b0 +BpA −C)po − d]pA (7)

where po =1− pS − pA.

From this system it can be deduced immediately

that (1) the non-altruists always have a higher birth

rate as they do not pay the cost of altruism and

therefore (2), the altruists can never invade the

equilibrium population of the non-altruist. This, of

course, is nothing but a restating of the classical

dilemma of the evolution of altruism. Thus, if in the

pair approximation model the altruists can invade, we

know that it is a consequence of spatial structure.

5. Invasion

5.1. ɪɴ���ɪ�ɴ �ʏɴ��ɪ��

In order to determine under what conditions

altruists can invade a system dominated by the

non-altruists, we proceed exactly as we would for

well-mixed populations. First, we work out the

dynamics of the system in the absence of altruists, and

then we derive the ‘‘invasion exponent’’ (Metz et al.,
1992; Rand et al., 1994) for a small population of

altruists.

In the absence of altruists, the non-altruists will

settle at a stable equilibrium pS = poS + pSS (see

Matsuda et al., 1992 for its derivation). At this point,

it is sufficient to verify that the resident has a positive

equilibrium which is the case if b0 is sufficiently larger

than dS (Matsuda et al., 1992).

If the altruists are (globally) rare (i.e. pAo, pAS and

pAA are all very small) they do not affect global

dynamics of the resident non-altruists. As a

consequence the invasion dynamics of the altruists are

governed by three differential equations, for pAo, pAS

and pAA. Matsuda et al. (1992) express these in the

form

dpij

dt
=Mijpij (8)

in which an expression Mij is called the ‘‘Malthusian’’

of pij. Here, however, we represent the system in a

different way (though formally equivalent), that is, in

matrix form:

dpA

dt
=M(qA)pA (9)

where

pA =�
�

�

pAo

pAS

pAA

�
�

�
and qA =�

�

�

qo�A

qS�A

qA�A

�
�

�
(10)

and M(qA) is a 3× 3 matrix that is fully given in

Appendix B.
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Unit of adaptation

�ʜ� �ɴɪ� �� ��ʟ���ɪ�ɴ 633

‘‘nano-individuals’’. It has already been shown by

Goodnight (1992) that for altruists to invade a system

of so-called ‘‘budding’’ populations, the composition

of daughter populations must be a small random

sample from their parent population. If the daughter

populations are of exactly the same composition as

the parent population, the proportion of non-altruists

will ceaselessly increase until all populations are

dominated by non-altruists. However, if the number

of individuals that buds off is small, there will be

variation due to sampling error so that some daughter

populations have a higher proportion of altruists. If

such populations produce more daughter popu-

lations, the global proportion of altruists will

eventually increase.

Thus, for the evolution of altruism there must be

discreteness and associated stochasticity (Goodnight,

1992). This means that we should analyse models that

are individual-based as well as spatial. Probabilistic

cellular automaton (PCA) models (which we will

describe in more detail) satisfy these criteria.

However, even when we assume haploid reproduction

(and thus ignore genetics) such PCA models are easy

to simulate but very hard to analyse.

1.3. �ʜ� ��ɪʀ ���ʀ��ɪ���ɪ�ɴ

Although simulations of PCA models are excellent

for developing intuition and formulating conjectures,

as models they are hard to analyse. Therefore, one

should consider more controllable models for which

there is more mathematical understanding and

which can be more directly connected with biological

data. The most promising of such models follow from

a correlation equation formalism (Matsuda et al.,
1992; Keeling & Rand, 1995; Keeling, 1995). Such

models are more robust to the assumptions under-

lying their derivation and these assumptions are more

open to experimental verification. The approach has

been applied to a range of systems, such as

host–parasite models (Satō et al., 1994; Keeling &

Rand, 1995; Keeling, 1995), vegetation dynamics

(Harada & Iwasa, 1994) and spatial games (Morris,

1997).

Matsuda et al.’s (1992) formalism, the so-called

pair approximation technique, models space im-

plicitly, by focusing on the interaction between

nearest neighbours. Matsuda et al. (1992) and

recently Harada et al. (1995) and Nakamaru et al.
(1997) have applied this technique to demonstrate

that altruists and non-altruists may coexist in a

viscous population, thus contradicting Taylor’s

(1992a, b) conclusion. In this article, we will elaborate

on these studies by focusing on the more general

problem of invasion of a rare population in viscous

system, and use the results to derive the invasion

conditions for altruists.

1.4. �ɪ�ɴ��� ɪɴ �ɪ����� ����ʟ��ɪ�ɴ�

Following Metz et al. (1992) and Rand et al. (1994)

we define the fitness of a rare mutant to be simply its

per capita rate of growth when rare. Therefore if the

mutant’s fitness is positive, the mutant increases in

number and can invade, if it is negative the mutant

will disappear.

Closely associated with the concept of fitness is that

of the ‘‘unit of selection’’. The definition of the unit

of selection as that entity ‘‘whose fitness is

maximized’’ (see, e.g. Dawkins, 1982) is dangerously

circular. However, our method of allows to link the

two concepts closely together. In fact, fitness and unit

of selection have to be calculated simultaneously.

In viscous systems, multiple differential equations

are necessary to describe the invasion dynamics of a

rare population, in contrast to well-mixed systems

where a single equation suffices. These differential

equations can be concisely represented in matrix

form. Thus, the invasion exponent (fitness) will be

given by the dominant eigenvalue of a matrix. The

corresponding eigenvector describes the spatial

structure of the clusters that form when the rare

population invades (as in Fig. 1). Mathematically,

fitness and unit of selection follow from a set of

simultaneous equations.

We will use these results to determine under what

conditions altruists can invade a system dominated by

non-altruists (assuming haploid inheritance). It will

turn out that the invasion condition is very similar to

Hamilton’s Rule, but the ‘‘coefficient of relatedness’’

Fɪɢ. 1. An example of a cluster of altruists (black) invading a

population of non-altruists (white) living on a triangular lattice

(n=6).jeudi 19 septembre 2013
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Levels of organisation

population
competition, predation, epidemiology, social interactions

individual
birth, death, development, behaviour

within-individual
physiology, learning, infection, immune response

ecosystem
biodiversity, nutrient cycles
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Consequence of Space

within-individualphysiology, infection, immune response

populationcompetition, predation, epidemiology, social interactions

individual
birth, death, development, behaviour

ecosystem
biodiversity, nutrient cycles
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Individuals are not really

Individuals but associations of more-or-less 
independent smaller entities

• genes	

 chromosomes
• haploid	

 diploid 
• organelles	

 cells
• cells	

 multicellular organisms
• individuals	

 symbioses
• populations	

 'superindividuals'
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ALLES IS  
OVERAL

maar het milieu selecteert
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EVERYTHING 

IS EVERY
WHERE

 but   the   environment   selects
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