Eco-evolutionary dynamics in aquatic communities: From mathematical to organismal models

Gregor Fussmann

McGill

Department of Biology
OUTLINE

• Preface 1
• Preface 2
• Preface 3
• Preface 4
• Chapter 1: Simple N-P-Z
• Chapter 2: N-P-Z(stage-structured)
• Chapter 3: N-P(genotypes)-Z
• Chapter 4: Z-P-Z(adaptive trait) +ENV
PREFACE 1: Assigned readings

PREFACE 2: Hierarchy of models and systems

<table>
<thead>
<tr>
<th>MODEL</th>
<th>ENVIRONMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>single species</td>
<td>+</td>
</tr>
<tr>
<td>2 species w/ interaction</td>
<td></td>
</tr>
<tr>
<td>many species community</td>
<td></td>
</tr>
<tr>
<td>local ecosystem</td>
<td></td>
</tr>
<tr>
<td>global ecosystem</td>
<td></td>
</tr>
</tbody>
</table>

Diagram Explanation:
- **Model Levels:**
 - Single species
 - 2 species with interaction
 - Many species community
- **Environment Levels:**
 - Local ecosystem
 - Global ecosystem
What I cover

- single species
- 2 species with interaction

MODEL

ENVIRONMENT
“Trophic Interaction, Complexity and Emergence”

Approach to Complexity:
DECONSTRUCTIVISM

Advantage:
DIRECT EXPERIMENTAL VALIDATION
PREFACE 3: AIMEN –

Approches Innovantes de Modélisation de l’Environnement Marin
AIMEN —

Approches Innovantes de Modélisation de l’Environnement Marin
AIMEN –
Approches Innovantes de Modélisation de l’Environnement Marin

Freshwater
Asexual or parthenogenetic
Fast reproduction
Little structure

\[
\frac{dN}{dt} = \ldots
\]
PREFACE 4: Experimental Approach: Microcosms
Experimental Approach: Microcosms

Chemostat Lake + River Embayment, Lagoon
Chapter 1. Intrinsic dynamics of simple aquatic communities

The Question

- Can a simple mathematical model predict an experimental predator-prey system, including its bifurcation structure?

The System

- Rotifer-phytoplankton food chain in chemostats
Experimental System

Brachionus calyciflorus herbivorous rotifer

Chlorella vulgaris green alga

Nutrients nitrogen limitation
The Model

- **Zooplankton**
 \[
 \frac{dZ}{dt} = \frac{a_Z PZ}{k_Z + P} - (\delta + m)Z
 \]

- **Phytoplankton**
 \[
 \frac{dP}{dt} = \frac{a_P NP}{k_P + N} + \frac{1}{\epsilon} \frac{a_Z PZ}{k_Z + P} - \delta P
 \]

- **Nutrients**
 \[
 \frac{dN}{dt} = \delta (N_{in} - N) - \frac{a_P NP}{k_P + N}
 \]
Predator-Prey Dynamics in the Chemostat

Math. Model

Chemostat Culture

Prediction

Observed Chemostat Dynamics

\[\frac{dZ}{dt} = \frac{a_Z}{k_Z + P} \left(\delta + m \right) Z \]

\[\frac{dP}{dt} = \frac{a_P}{k_P + N} \frac{NP}{k_P + P} \frac{1}{\delta + m} \left(\delta + m \right) Z \]

\[\frac{dN}{dt} = (\delta N_{in} - N) \frac{a_P}{k_P + N} \]

Days

Days

Relative population size

Relative population size

Chlorella

Brachionus
Predictions of the Simple Model in Parameter Space

- Extreme Oscillations -> Extinction
- Oscillations
- Equilibria
- Extinction

Diagram showing the relationship between nitrogen concentration (N, μmol/liter) and dilution rate (δ, per day).
The Model Successfully Predicts Qualitative Aspects of Real Dynamics

Model Prediction

Experimental Community Dynamics

Fussmann et al., Science (2000)
1. Intrinsic dynamics of simple aquatic communities

The Importance
- A simple model predicts equilibrium and stable limit dynamics of a live predator-prey community

The Team
- Cornell University

S. Ellner
N. Hairston
G. Fussmann
Chapter 2. The persistence of predator-prey cycles

<table>
<thead>
<tr>
<th>The Question</th>
<th>The System</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Long-lasting predator-prey cycles – a reality?</td>
<td>• Rotifer-phytoplankton food chain in chemostats</td>
</tr>
</tbody>
</table>
Experimental predator-prey cycles

Weevil-Wasp (Utida 1957)

Gause 1934

2 ciliates

Luckinbill 1973
Long-lasting predator-prey cycles – a reality?

(a) Time Series
(b) Phase Portrait
(c) Wavelet Coherency
(f) Relative phase difference
Long-lasting predator-prey cycles – a reality?

The Results

Rudolf et al. (resubmission in prep.)
Relative phase difference
Real data Stage-structured, stochastic model

Rudolf et al. (resubmission in prep.)
2. The persistence of predator-prey cycles

The Importance

- Predator-prey cycles can be a persistent dynamical signal of communities
- Structure and stochasticity capture abandon of and return to cycles

The Team

- PhD student Lars Rudolf
- U Potsdam, U Oldenburg, McGill

L. Rudolf G. Weithoff U. Gaedke B. Blasius
Chapter 3. Genetic diversity and eco-evolutionary dynamics

The Questions

• Do the dynamics of genetically diverse and genetically uniform communities differ?

• Can ecological and evolutionary dynamics happen at the same time scale?

The System

• Rotifer-phytoplankton food chain in chemostats

Monoclonal
Phytoplankton

Polyclonal

(A) (B)
Phase shifts

„Something is wrong with our predator-prey cycles“

Dynamics with **monoclonal algae**

PREY EVOLUTION

Model
(algae: single variable)

Experiment
Dynamics with polyclonal algae

PREY EVOLUTION

Model
(algae: multiple variables)

Experiment

Nutrients

Rotifers

Algae

Rotifers
Eco-evolutionary feedback cycle

Clonal population structure of algae

Alternating selection of palatable and slow-growing clones

Evolution/Selection

Community Dynamics

Predator-prey oscillations

Trait Distribution

Community Structure
Trait identified → Clumping of algae

3. Genetic diversity and eco-evolutionary dynamics

The Importance

• Genetic diversity can significantly alter community dynamics
• Classical ecological dynamics and evolutionary processes co-determine the community dynamics

The Team

• Cornell University, McGill

Fussmann Ellner Jones Yoshida Hairston
Applications of Eco-Evo?
Environmental change

- Occuring at unprecedented rates
- Geographical patterns

IPCC: Projected surface temperature changes for the late 21st century
The potential options for organisms

• Extinction

• Migration
 → Change of geographical distribution

• Adaptation
 (in the region where change occurs)
Adaptation in the region where change occurs

• Evolutionary rescue (ER) occurs when genetic adaptation allows a population to recover from demographic effects initiated by environmental change that would otherwise cause extirpation.
Evolutionary rescue

In theory
(Gomulkiewicz & Holt 1995 Evolution)
Evolutionary rescue

... and in experimental practice
(Bell & Gonzalez 2009 Ecol. Lett.)

In theory ...
Evolutionary rescue

... and in experimental practice
(Bell & Gonzalez 2009 *Ecol. Lett.*)

In theory ...

BUT:
NO THEORY
FOR COMMUNITIES
Chapter 4
Community Evolutionary Rescue

The System
An Armstrong-McGehee type competitive system

– Oscillatory dynamics
– External environmental change
– Trait evolution

N1

N2

R
Chapter 4
Community Evolutionary Rescue

The System
An Armstrong-McGehee type competitive system

- Oscillatory dynamics
- External environmental change
- Trait evolution

With Andrew Gonzalez, McGill
Chapter 4 -- Community Evolutionary Rescue

The Questions

• Can trait evolution allow ER, and ensure the community persists by preventing competitive exclusion during environmental change?

• Does ER bring about a change in the character of the oscillations (period, amplitude) governing coexistence before and after environmental change?
Chapter 4 – Community Evolutionary Rescue

The Model

2 × Rosenzweig-MacArthur = Armstrong-McGehee

\[
\frac{dR}{dt} = \mu R \left(1 - \frac{R}{K}\right) - f_1(R)N_1 - f_2(R)N_2 \\
\frac{dN_1}{dt} = \varepsilon_1 f_1(R)N_1 - m_1 N_1 \\
\frac{dN_2}{dt} = \varepsilon_2 f_2(R)N_2 - m_2 N_2 \\
\]

with: \(f_1(R) = \frac{a_1 R}{1 + b_1 R} \); \(f_2(R) = \frac{a_2 R}{1 + b_2 R} \)
The Model

Linear environmental change affects curvature of the functional response.

\[\frac{dT}{dt} = p \]

\[f_i(R) = \frac{(a_i + z_i T(p)) R}{1 + c_i (a_i + z_i T(p))^{q_i} R} \]
The Model

- Consumers can evolve to counter environmental change.
- Change of curvature of functional response (a quantitative trait) is proportional to fitness gradient.

\[
\frac{da_i}{dt} = v_i \frac{\partial}{\partial a_i} \left(\frac{1}{N_i} \frac{dN_i}{dt} \right) = v_i \frac{\partial}{\partial a_i} \left(\frac{\varepsilon_i}{1 + c_i (a_i + z_i T(p))^q_i} R - m_i \right) =
\]

\[
= v_i \varepsilon_i R \frac{1 + c_i (a_i + z_i T(p))^q_i R(1 - q_i)}{\left(1 + c_i (a_i + z_i T(p))^q_i R\right)^2}
\]
The Model

- Manipulate direction and intensity of

 - Environmental change: parameter z_i
 - Evolutionary change: parameter v_i

\[
\frac{d a_i}{d t} = v_i \frac{\partial}{\partial a_i} \left(\frac{1}{N_i} \frac{d N_i}{d t} \right) = v_i \frac{\partial}{\partial a_i} \left(\varepsilon_i \frac{(a_i + z_i T(p)) R}{1 + c_i (a_i + z_i T(p))^{q_i} R} - m_i \right) = \frac{\partial}{\partial a_i} \left(v_i \varepsilon_i R \frac{1 + c_i (a_i + z_i T(p))^{q_i} R (1 - q_i)}{\left(1 + c_i (a_i + z_i T(p))^{q_i} R\right)^2} \right)
\]
Results

- The baseline Armstrong-McGehee dynamics
Results

- Environmental change leads to extinction
Results

- Evolution can lead to extinction but doesn’t need to
Results

• Evolutionary rescue can occur
• Recovery dynamics can be reminiscent of the “U-shaped curve”
Results

• Dynamic regime pre-, during, and post-rescue differs

Wavelets courtesy of L. Rudolf, B. Blasius
Conclusions

• ER is capable of maintaining an oscillating community experiencing sustained environmental change.

• This is a case study, but ER occurred over a wide range of evolutionary strengths (or genetic variances) and, thus, did not depend on evolution being “just right.”
Conclusions

• Despite high-frequency changes of population abundances – adaptive evolutionary trait change can be gradual and directional, and therefore contribute to community rescue.

• Change in the character of community oscillations may be a signature that a community is undergoing ER.
Quote –
Elena Litchman’s father, last night at the buffet:

“Experiments without theory are blind, but theory without experiments is dead.”